Setting the Record
Straight with Singletons

by Reed Mullanix / University of Minnesota / WITS '22
on January 22, 2022

[1/11]

» Definitions

A large part of the praxis of using a proof assistant effectively
is the careful choice of definitions.

[2/11]

» Definitions

A large part of the praxis of using a proof assistant effectively
is the careful choice of definitions.

In fact, there often isn't a single “correct” choice!

[2/11]

» Definitions

A large part of the praxis of using a proof assistant effectively
is the careful choice of definitions.

In fact, there often isn't a single “correct” choice!

One way this manifests is when we try to define an algebraic
heirarchy.

[2/11]

» Bundled and Unbundled Structures

As a case study, let's look at 2 possible defintions of a Monoid:

[3/11]

» Bundled and Unbundled Structures

As a case study, let's look at 2 possible defintions of a Monoid:
The first “bundles up” the carrier type inside of the structure.

Monoid = record {X : U,0 : X x X = X, ...}

[3/11]

» Bundled and Unbundled Structures

As a case study, let's look at 2 possible defintions of a Monoid:
The first “bundles up” the carrier type inside of the structure.

Monoid = record {X : U,0 : X x X = X, ...}

On the other hand, we could parameterize over all the
relevant data!

Monoid = V(X :U)(o : X x X — X)(e : X), isMonoid(X, o, €)

[3/11]

» Bundled and Unbundled Structures

As a case study, let's look at 2 possible defintions of a Monoid:
The first “bundles up” the carrier type inside of the structure.

Monoid = record {X : U,0 : X x X = X, ...}

On the other hand, we could parameterize over all the
relevant data!

Monoid = V(X :U)(o : X x X — X)(e : X), isMonoid(X, o, €)

The parameterized version lets us (defintionally) constrain some
components of the structure, and the bundled version lets us more
easily talk about the type of all monoids.

[3/11]

» Bundled and Unbundled Structures

To use the parameterized definition, we need to have
unification and implicits to have any hope.

[4/11]

» Bundled and Unbundled Structures

To use the parameterized definition, we need to have
unification and implicits to have any hope.

However, unification is hard.

[4/11]

» Bundled and Unbundled Structures

To use the parameterized definition, we need to have
unification and implicits to have any hope.

However, unification is hard.

We've managed to avoid writing a unifier in cooltt so far,
can we keep going?

[4/11]

» Bundled and Unbundled Structures

To use the parameterized definition, we need to have
unification and implicits to have any hope.

However, unification is hard.

We've managed to avoid writing a unifier in cooltt so far,
can we keep going? (Spoiler: the answer is yes!)

[4/11]

» Singleton Types

What unification buys is is the ability to specify that two structures
are defined on the same data.

[5/11]

» Singleton Types

What unification buys is is the ability to specify that two structures
are defined on the same data. What if we could do that another

way?

[5/11]

» Singleton Types

What unification buys is is the ability to specify that two structures
are defined on the same data. What if we could do that another

way?
Enter singleton types!

[5/11]

» Singleton Types

What unification buys is is the ability to specify that two structures
are defined on the same data. What if we could do that another
way?

Enter singleton types!

Singleton types allow us to quantify over terms that are

determined up to definitional equality.

[5/11]

» Singleton Types

What unification buys is is the ability to specify that two structures
are defined on the same data. What if we could do that another
way?

Enter singleton types!

Singleton types allow us to quantify over terms that are

determined up to definitional equality.

[N|4], [U| Bool - Bool |, etc...

[5/11]

» Singleton Types

What unification buys is is the ability to specify that two structures
are defined on the same data. What if we could do that another
way?

Enter singleton types!

Singleton types allow us to quantify over terms that are
determined up to definitional equality.

[N|4], [U| Bool - Bool |, etc...
Typechecking these is easy with NbE!

(In fact, we already have a more general form of type in
cooltt called an extension type for various cubical reasons).

[5/11]

» Elaborating Records

Armed with our new types, we eliminate the need parameterized
representation!

We add some syntactic sugar for elaborating a “patched
record”

[6/11]

» Elaborating Records

Armed with our new types, we eliminate the need parameterized
representation!

We add some syntactic sugar for elaborating a “patched
record”

M : Monoid + M| Carrier =N, o .= +, ...]

[6/11]

» Elaborating Records

Armed with our new types, we eliminate the need parameterized
representation!

We add some syntactic sugar for elaborating a “patched
record”

M : Monoid + M| Carrier =N, o .= +, ...]

This elaborates out to a record type with singleton types
constraining the relevant fields.

[6/11]

» Elaborating Records

Armed with our new types, we eliminate the need parameterized
representation!

We add some syntactic sugar for elaborating a “patched
record”

M : Monoid + M| Carrier =N, o .= +, ...]

This elaborates out to a record type with singleton types
constraining the relevant fields.

We then always work with the bundled representation, and use
these “patches” in place of the parameterized version.

[6/11]

» Unification Strikes Back!

However, this is only half the story!
We often want to define data as a family of types.

[7/11]

» Unification Strikes Back!

However, this is only half the story!
We often want to define data as a family of types.
For instance, the type hom : obj — obj — U for a category.

[7/11]

» Unification Strikes Back!

However, this is only half the story!
We often want to define data as a family of types.
For instance, the type hom : obj — obj — U for a category.

When defining any operations involving multiple homs, we end
up with a huge explosion of arguments! As an example, assoc
would need 4 redundant arguments!

[7/11]

» Unification Strikes Back!

However, this is only half the story!
We often want to define data as a family of types.
For instance, the type hom : obj — obj — U for a category.

When defining any operations involving multiple homs, we end
up with a huge explosion of arguments! As an example, assoc
would need 4 redundant arguments!

This is normally handled by adding implicit arguments, but
that requires unification! What are we to do?

[7/11]

» Unification Strikes Back!

However, this is only half the story!
We often want to define data as a family of types.
For instance, the type hom : obj — obj — U for a category.

When defining any operations involving multiple homs, we end
up with a huge explosion of arguments! As an example, assoc
would need 4 redundant arguments!

This is normally handled by adding implicit arguments, but
that requires unification! What are we to do?

Hmm, that family looks a lot like some sort of parameterized
representation...

[7/11]

» Automatic Bundling

If we can extend the elaborator with the ability to convert a type
family of the form:

P:record {..} - U

[8/11]

» Automatic Bundling

If we can extend the elaborator with the ability to convert a type
family of the form:

P:record {..} - U
Into it's “bundled” representation:
record {..., fibre : P(struct {...})}

[8/11]

» Automatic Bundling

If we can extend the elaborator with the ability to convert a type
family of the form:

P:record {..} - U
Into it's “bundled” representation:
record {..., fibre : P(struct {...})}

Then we can re-use the record patching machinery from before to
solve the problem!

[8/11]

» Automatic Bundling

If we can extend the elaborator with the ability to convert a type
family of the form:

P:record {..} - U
Into it's “bundled” representation:
record {..., fibre : P(struct {...})}

Then we can re-use the record patching machinery from before to
solve the problem!

IE: given hom : record {s: obj, t: obj} — U...

[8/11]

» Automatic Bundling

If we can extend the elaborator with the ability to convert a type
family of the form:

P:record {..} - U
Into it's “bundled” representation:
record {..., fibre : P(struct {...})}

Then we can re-use the record patching machinery from before to
solve the problem!

IE: given hom : record {s: obj, t: obj} — U...

We can then bundle this family into
record {s: obj, t: obj, fibre: hom(struct {s=s,t = t})}...

[8/11]

» Automatic Bundling

If we can extend the elaborator with the ability to convert a type
family of the form:
P:record {..} - U
Into it's “bundled” representation:
record {..., fibre : P(struct {...})}
Then we can re-use the record patching machinery from before to
solve the problem!
IE: given hom : record {s: obj, t: obj} — U...
We can then bundle this family into
record {s : obj, t: obj, fibre: hom(struct {s=s,t=t})}...
And then constrain the fields using singleton types.

[8/11]

» Automatic Bundling

Pulling it all together, we can define a category like so:

def category : type :=
sig (ob : type)
(hom : sig (s : ob) (t : ob) - type)
(id : (x:0b) hom [s .=x | t .=x 1)
(seq : (f : hom) (g : hom [s .= £.t]) -~
hom [s .=f.s | t .=g.t 1)

(Excuse the cooltt syntax)

[o/11]

» Implementation

This is roughly the same level of brevity that unification and
implicits would provide us, but at a fraction of the implementation

cost.

[10/11]

» Implementation

This is roughly the same level of brevity that unification and
implicits would provide us, but at a fraction of the implementation

cost.
It took under 100 lines of code in cooltt to add all the
elaborator features required.

[10/11]

Questions?

[11/11]

