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» Definitions

∗ A large part of the praxis of using a proof assistant effectively
is the careful choice of definitions.

∗ In fact, there often isn’t a single “correct” choice!
∗ One way this manifests is when we try to define an algebraic

heirarchy.
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» Bundled and Unbundled Structures

As a case study, let’s look at 2 possible defintions of a Monoid:

∗ The first “bundles up” the carrier type inside of the structure.

Monoid = record {X : U , ◦ : X × X → X , . . .}

∗ On the other hand, we could parameterize over all the
relevant data!

Monoid = ∀(X : U)(◦ : X ×X → X )(e : X ), isMonoid(X , ◦, e)

The parameterized version lets us (defintionally) constrain some
components of the structure, and the bundled version lets us more
easily talk about the type of all monoids.
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» Bundled and Unbundled Structures

∗ To use the parameterized definition, we need to have
unification and implicits to have any hope.

∗ However, unification is hard.
∗ We’ve managed to avoid writing a unifier in cooltt so far,

can we keep going? (Spoiler: the answer is yes!)
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» Singleton Types

What unification buys is is the ability to specify that two structures
are defined on the same data.

What if we could do that another
way?
∗ Enter singleton types!
∗ Singleton types allow us to quantify over terms that are

determined up to definitional equality.
∗ [ N | 4 ] , [ U | Bool→ Bool ] , etc...
∗ Typechecking these is easy with NbE!
∗ (In fact, we already have a more general form of type in
cooltt called an extension type for various cubical reasons).
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» Elaborating Records

Armed with our new types, we eliminate the need parameterized
representation!
∗ We add some syntactic sugar for elaborating a “patched

record”

∗ M : Monoid ` M [ Carrier .= N, ◦ .= +, ... ]

∗ This elaborates out to a record type with singleton types
constraining the relevant fields.
∗ We then always work with the bundled representation, and use

these “patches” in place of the parameterized version.
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» Unification Strikes Back!

However, this is only half the story!
∗ We often want to define data as a family of types.

∗ For instance, the type hom : obj→ obj→ U for a category.
∗ When defining any operations involving multiple homs, we end

up with a huge explosion of arguments! As an example, assoc
would need 4 redundant arguments!
∗ This is normally handled by adding implicit arguments, but

that requires unification! What are we to do?
∗ Hmm, that family looks a lot like some sort of parameterized

representation...
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» Automatic Bundling

If we can extend the elaborator with the ability to convert a type
family of the form:
∗ P : record {...} → U

Into it’s “bundled” representation:
∗ record {..., fibre : P(struct {...})}

Then we can re-use the record patching machinery from before to
solve the problem!
∗ IE: given hom : record {s : obj, t : obj} → U ...
∗ We can then bundle this family into

record {s : obj, t : obj, fibre : hom(struct {s = s, t = t})}...
∗ And then constrain the fields using singleton types.
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» Automatic Bundling

Pulling it all together, we can define a category like so:

def category : type :=
sig (ob : type)

(hom : sig (s : ob) (t : ob) → type)
(id : (x : ob) → hom [ s .= x | t .= x ])
(seq : (f : hom) (g : hom [ s .= f.t ]) →

hom [ s .= f.s | t .= g.t ])
...

(Excuse the cooltt syntax)
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» Implementation

This is roughly the same level of brevity that unification and
implicits would provide us, but at a fraction of the implementation
cost.

∗ It took under 100 lines of code in cooltt to add all the
elaborator features required.
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Questions?
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